





## Cyanophora DY-V Medium

(NCMA)

*Cyanophora* medium is simply DY-V medium plus additions of organics and soil water extract. DY-V is an artificial freshwater medium that was developed for chromophytes, especially chrysophytes and synurophytes. DY-V is derived from DY-III medium (Lehman 1976), although first modified as DY-IV by adding more trace metals (Keller and Andersen, in Andersen et al. 1997). DY-V was further modified by increasing the nitrogen and phosphorus concentrations. Its primary disadvantage is that fungi grow very well in the medium, probably due to the combination of glycerophosphate and ammonium, and therefore careful sterile technique is required. The MES buffer is pH adjusted to outside its buffering range, but removal of the MES hinders growth. The soil water extract is prepared by autoclaving 20 g of soil (from virgin prairie of North Dakota) in 100 mL of distilled water.

To prepare, begin with 950 mL of  $dH_2O$ , add the following components and bring the final volume to 1 liter using  $dH_2O$ . Adjust pH to 6.8 with NaOH. Autoclave.

| Component                          | Stock Solution                | Quantity | Molar Concentration in Final<br>Medium |
|------------------------------------|-------------------------------|----------|----------------------------------------|
| MES                                |                               | 200 mg   |                                        |
|                                    | FO /I III O                   |          |                                        |
| $MgSO_4 \cdot 7H_2O$               | $50 \text{ g/L dH}_2\text{O}$ | 1 mL     | 2.03 x 10 <sup>-4</sup> M              |
| KCl                                | $3 \text{ g/L dH}_2\text{O}$  | 1 mL     | 4.02 x 10 <sup>-5</sup> M              |
| NH <sub>4</sub> Cl                 | 2.68 g/L dH <sub>2</sub> O    | 1 mL     | 5.01 x 10 <sup>-5</sup> M              |
| NaNO <sub>3</sub>                  | 20 g/L dH <sub>2</sub> O      | 1 mL     | 2.35 x 10 <sup>-4</sup> M              |
| Na <sub>2</sub> b-glycerophosphate | 2.16 g/L dH <sub>2</sub> O    | 1 mL     | 1.00 x 10 <sup>-5</sup> M              |
| $H_3BO_3$                          | 0.8 g/L dH <sub>2</sub> O     | 1 mL     | 1.29 x 10 <sup>-5</sup> M              |
| $Na_2SiO_3 \cdot 9 H_2O$           | 14 g/L dH <sub>2</sub> O      | 1 mL     | 4.93 x 10 <sup>-5</sup> M              |
| CaCl <sub>2</sub>                  | 75 g/L dH <sub>2</sub> O      | 1 mL     | 6.76 x 10 <sup>-4</sup> M              |
| soil water extract                 |                               | 1 mL     |                                        |
| organics solution                  | (see recipe)                  | 1 mL     |                                        |
| trace element solution             | (see recipe)                  | 1 mL     |                                        |
| f/2 vitamin solution               | (see recipe)                  | 0.5 mL   |                                        |



## **Organics Solution**

To prepare, dissolve the following components in  $900\ mL$  of  $dH_2O$  and bring the final volume to 1 liter. Autoclave.

| Component     | Stock Solution | Quantity | Molar Concentration in Final |
|---------------|----------------|----------|------------------------------|
|               |                | -        | Medium                       |
| Bacto-peptone |                | 20.0 g   |                              |
| Malt extract  |                | 50.0 g   |                              |

## **Trace Element Solution**

To prepare, separately dissolve the following components in 100 mL of  $dH_2O$ . Combine the six solutions (= 600 mL) and bring the final volume to 1 liter. Autoclave.

| Component                                | Stock Solution                           | Quantity | Molar Concentration in Final |
|------------------------------------------|------------------------------------------|----------|------------------------------|
|                                          |                                          |          | Medium                       |
| Na <sub>2</sub> EDTA · 2H <sub>2</sub> O |                                          | 8.0 g    | 2.15 x 10 <sup>-5</sup> M    |
| FeCl <sub>3</sub> ⋅6 H <sub>2</sub> O    |                                          | 1.0 g    | 3.70 x 10 <sup>-6</sup> M    |
| $MnCl_2 \cdot 4H_2O$                     |                                          | 200 mg   | 1.01 x 10 <sup>-6</sup> M    |
| $ZnSO_4 \cdot 7H_2O$                     |                                          | 40 mg    | 1.39 x 10 <sup>-7</sup> M    |
| $CoCl_2 \cdot 6H_2O$                     | 8.0 g L <sup>-1</sup> dH <sub>2</sub> O  | 1 mL     | 3.36 x 10 <sup>-8</sup> M    |
| $Na_2MoO_4 \cdot 2H_2O$                  | 20.0 g L <sup>-1</sup> dH <sub>2</sub> O | 1 mL     | 8.27 x 10 <sup>-8</sup> M    |
| $Na_3VO_4 \cdot 10H_2O$                  | 2.0 g L <sup>-1</sup> dH <sub>2</sub> O  | 1 mL     | 5.49 x 10 <sup>-9</sup> M    |
| $H_2SeO_3$                               | 4 g L <sup>-1</sup> dH <sub>2</sub> O    | 1 mL     | 2.31 x 10 <sup>-8</sup> M    |



## f/2 Vitamin Solution

(Guillard & Ryther 1962, Guillard 1975)

First, prepare primary stock solutions. To prepare final vitamin solution, begin with 950 mL of  $dH_2O$ , dissolve the thiamine, add 1 mL of the primary stocks and bring final volume to 1 liter with  $dH_2O$ . Filter sterilize. Store in refrigerator or freezer.

| Component                              | PrimaryStock<br>Solution  | Quantity | Molar Concentration in<br>Final Medium |
|----------------------------------------|---------------------------|----------|----------------------------------------|
| thiamine · HCl (vit. B <sub>1</sub> )  |                           | 200 mg   | 2.96 x 10 <sup>-7</sup> M              |
| biotin (vit. H)                        | 1.0 g/L dH <sub>2</sub> O | 1 mL     | 2.05 x 10 <sup>-9</sup> M              |
| cyanocobalamin (vit. B <sub>12</sub> ) | 1.0 g/L dH <sub>2</sub> O | 1 mL     | 3.69 x 10 <sup>-10</sup> M             |

Andersen, R. A., Morton, S. L., and Sexton, J. P. 1997. Provasoli-Guillard National Center for Culture of Marine Phytoplankton 1997 list of strains. *J. Phycol.* 33 (suppl.):1-75.

Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. pp 26-60. *In* Smith W.L. and Chanley M.H (Eds.) *Culture of Marine Invertebrate Animals*. Plenum Press, New York, USA.

Guillard, R.R.L. and Ryther, J.H. 1962. Studies of marine planktonic diatoms. I. *Cyclotella nana* Hustedt and *Detonula confervacea* Cleve. *Can. J. Microbiol.* **8:** 229-239.

Lehman, J.T. 1976. Ecological and nutritional studies on *Dinobryon* Ehrenb.: Seasonal periodicity and the phosphate toxicity problem. *Limnol. Oceanog.* **21**: 646-658.